

SHELTER

Blueprinting Report

2

Table of Contents

Introduction ... 4

Purpose of this Document .. 4

Document Scope .. 4
Related Documents ... 4

High-Level Solution Design ... 5

Project background .. 5

Goals ... 5

Overview of Solution ... 6

Summary of Recommendations .. 8
Separating the concerns of content management, workflow and delivery .. 8
Implementing a component-based architecture for front-end development .. 10
Providing a unified view of content and data through the use of APIs... 11

Current State ... 12

Future State ... 13
Jira manages editorial workflow ... 13
Contentful provides content management ... 13
Gatsby provides static site building .. 14
Netlify provides CDN hosting .. 14
BitBucket and Pipelines manage releases and deployments .. 14
Jira manages development workflow ... 14
Azure Functions provides Serverless Compute ... 14

Evaluation Methodology .. 16

Digital Engagement Capability and Maturity Model ... 17

Categories ... 17
Content ... 17
Application .. 17
Data ... 17
Integration .. 17
Monitoring .. 17
Governance and Operations ... 17

Priority .. 18

Assessment.. 18

Product Selection - Web Content Management System ... 18
Overview and recommendations .. 19

Comparison Highlights ... 20
Contentful ... 20
Prismic ... 20
WordPress ... 21
Methodology ... 22
Market research .. 22
Hosting, support and maintenance costs.. 22

Longlist .. 24

Exclusions .. 25

3

Legacy.. 25
Poor fit .. 26

Selections .. 27
Candidates .. 27
Shortlist ... 29
Scoring ... 30
Web Content Management Selection Scores ... 31

Recommendation - Content Delivery Stack .. 32

Component Based Framework ... 32
Framework Evaluation .. 32
Recommendation - React.js .. 32
Costs .. 32

Content Delivery .. 32
Stacks Evaluated.. 32
Recommendation - Netlify .. 33
Costs .. 33

Design System ... 34
Recommendation - Atomic Design ... 34

Recommendation - Workflow and Delivery ... 35

Products Reviewed .. 35

Recommendation - Jira .. 36

Costs ... 36

Appendix A – Testing Approach .. 37

Appendix B - Capabilities to Recommendations Index ... 38

Content Management .. 38

4

Introduction
Purpose of this Document
This document is a summary of the Blueprinting work undertaken by Manifesto for Shelter
including an assessment of the current digital landscape and recommendations for future
improvements. It summarises key findings both from the work undertaken by Manifesto
and previously by Shelter and made available to us. Where appropriate, this document will
outline the methodology used to come to a recommendation.

Document Scope
This document is intended to provide a clear summation of the findings and
recommendations and act as a high-level blueprint for future change and the underlying
structures and paradigms that should be put in place to achieve these. Where appropriate,
specific technologies or providers will be recommended for implementation, although these
should be treated as a recommendation based on the landscape at the time of the issue.

Related Documents
Name Role Version

User-Stories-Workshops-with-Capabilities-
v1.0.xlsx

Shelter User Story document linked to
capability model

1.0

shelter-cms-product-evaluation-scoresheets-
v1.0.xlsx

CMS Product selection scoring 1.0

shelter-current-state-architecture-v.1.0.pdf Current state architecture diagram 1.0

shelter-future-state-architecture-v.1.0.pdf Future state architecture diagram 1.0

shelter-product-backlog-v2.0.xlsx Initial product backlog for delivery 2.0

shelter-digital-engagement-capability-model-
v2.0.xlsx

Digital Engagement Capability model tool 2.0

5

High-Level Solution Design
Project background
As part of Shelter’s ongoing TIDE programme which aims to unify your digital estate, you
asked us to make clear recommendations for the future of Shelter’s digital publishing
ecosystem – one that’s flexible, meets your business needs to engage and support end
users, and improves workflow and processes for content creation and governance.

Ultimately, this will enable Shelter to manage and strengthen its relationship with internal
and external audiences – enabling deeper, more fulfilling engagement with Shelter that will
benefit the organisation as a whole.

Our proposed solution is designed to future-proof your organisation and move away from
your current fragmented, inflexible and developer-dependent architecture to one which
allows you to scale up and devolve content creation, drive quality and efficiency, unify your
users’ interaction experiences – and implement data-driven feedback into your workflows.

Goals
As part of the production of this report, we spoke to a number of key stakeholders in your
organisation, digested a range of internal documents and reviewed the preliminary work
undertaken by Shelter in preparation for this project.

The following high-level needs were outlined to us:

• Allow for the devolution of digital publishing responsibilities across the business

• Allow for flexible content modelling

• Create transparent workflows that standardise the digital publishing process

• Integrate with a variety of tools and services

• Futureproof Shelter’s Digital publishing capabilities

The scope of the work we have been tasked by Shelter to undertake can be summarised as:

“Recommend a best-in-class digital platform architecture that replaces and devolves your
current content management solution, and empowers and future-proofs your organisation
within a rapidly moving world.”

6

In order to make clear recommendations to you about how best to meet these needs, we
undertook the following activities:

• We described a current and future state architecture for Shelter’s digital publishing
platform

• We described a capability and maturity framework that provides the basis for
mapping current state digital capabilities and identifying future ambition

• We performed a Web Content Management System Product Selection

• We detailed a series of epics that form a roadmap

Overview of Solution
In order to decide what architecture best answers the question about Shelter’s future state,
we believe there are three possible answers:

1. Rebuilding the current application in the same platform

2. Reimplementing the website using a different CMS platform

3. Implementing a Digital Engagement Platform by integrating best of breed products

We believe the answer is the third option – implementing a Digital Engagement Platform,
which we describe as a suite of tools an organisation uses to engage with its users.

To understand why we think this is the answer, we understand that Shelter requires the
following:

• You need a Digital Engagement Platform that you can use to build and deliver new
products and services at pace

• You need a Digital Engagement Platform that helps to democratise tasks such as
managing content changes into production

• You need a digital engagement platform that can evolve as you deliver new products
for example a replacement for your CRM

The solution described in this document supports the following high-level goals:

• Be a flexible platform that supports regular, incremental change – in order, for
example, to facilitate the introduction of new channels and products

• Minimise the requirement for Shelter DevOps team to manage servers – preferring
Software as a Service (SaaS) products or products with lower operational overhead

• Support an operating model that describes Shelter managing subsequent
development on the platform – preferring a model that utilises widely available skills
and experience

7

We've described a modular platform that supports the integration of best of breed products
and applications. Whilst this introduces some complexity in terms of the number of
applications and the need to integrate them, it delivers an architecture that better supports
evolution.

An evolutionary architecture is one that supports incremental, guided change as a first
principle across multiple dimensions. In this case when we say dimensions we mean the
lenses used to help understand a digital architecture such as technical, operational, data
and security. Evolutionary architecture is primarily about optimising for evolvability across
each of these dimensions.

The ability to evolve recognises the need for the architecture of your software to change
over time. In order to deliver an underlying platform that provides stability over a longer
period, we believe you should invest in describing an architecture that supports change as a
first-order capability. What this means in practice is a platform that is capable of
withstanding the change of the introduction of a new product or the withdrawal of a legacy
one, without significant disruption.

A platform that provides stability over time whilst supporting the ability to evolve and
change, will remain fit for purpose and relevant for longer.

8

Summary of Recommendations
The key components required to deliver an evolvable digital architecture for Shelter can be
described as:

• Separating the concerns of content management, workflow and delivery

• Implementing a component-based architecture for front-end development

• Providing a unified view of content and data through the use of APIs

Separating the concerns of content management,
workflow and delivery
By separating content management, workflow and delivery you enable greater flexibility in
your architectural system. If offers you the ability to utilise specialist skills where they can
add the most value and allows you the opportunity to evolve each of those products on
their own roadmap. The skills that already exist within the Shelter digital team mean they
are able to take ownership of each of the element as a separate concern.

Having looked at the elements of the architecture as discrete components, it is then
important to evaluate how we would design Shelter’s architecture to bring the capabilities
those products and frameworks offer and tie them together to create a seamless system
that utilises the power and strengths of those products as a holistic system.

First let’s look at the separation of content management and delivery. This is typically
described as decoupled content management.

Decoupled content management
Decoupled content management describes a separation between the application used to
manage content and the application used to deliver it.

One of the primary benefits for Shelter is that a decoupled content management system
allows the front-end developers to work independently from the constraints of the content
management system, enabling faster iteration and empowering the model of Product teams
that Shelter is moving towards. Furthermore, it brings the following additional benefits:

• It allows your repository system and publishing system to be on different
architectures

• It is easier to scale a decoupled delivery tier as there are typically fewer moving parts
and those parts themselves are often stateless

• Different architectures provide the ability to build teams with different skill sets to
work on each of the applications.

Although decoupled content management includes systems where the delivery application
is also a dynamic application (i.e. one where the data and presentation is pulled together

9

when a user requests it) we’re recommending a model where your primary web presence is
delivered through the use of static HTML.

Utilising an automated, static publishing model
A static publishing model focuses on producing static HTML pages from a catalogue of
flexible user interface components and relevant data sources, as part of a build process. The
produced static HTML pages are then subsequently deployed to hosting such as a Content
Delivery Network. In addition to the benefits of a decoupled model, the use of a static
publishing model brings the following benefits:

• It provides the ability to make your delivery layer more secure. By using a static
publishing model, the size and range of potential attack vectors is significantly
reduced

• Higher reliability. No CMS in the delivery tier means fewer moving parts. Static
HTML files usually don’t throw exceptions.

An automated static publishing model extends this model linking it to a workflow tool so
that deployments of updated web pages are triggered automatically in response to
workflow transitions.

The following principles describe this model a bit more practically:

• Webpages are created as static HTML during the deployment of the site

• Any dynamic programming during the request/response cycle is handled by
JavaScript, running entirely on the client

• All server-side processes or database actions are abstracted into reusable APIs,
accessed over HTTP with JavaScript

• The process of generating HTML pages is triggered by workflow.

In conclusion such a model is in general, easier to secure, performs better, and is easier to
release and rollback - creating static versions of the site, you are able to more easily manage
versions, allowing you to be able to quickly generate new versions and deploy to a testing,
staging or production server for review with limited dependencies, or generate versions
from a given point in time or commit.

Implementing a visual workflow tool to manage content publishing
In order to successfully devolve the responsibility of publishing changes to the Shelter
website our architecture describes a separate visual workflow tool. The key benefit of
separating the workflow tool from the content management system is that it provides the
ability to manage the full end to end process of content development and generation, even
before the content is uploaded or created in the CMS

Facilitating integration using APIs and an event-based model
Successfully integrating a range of products to deliver a coherent digital publishing platform
requires the ability for the various products to communicate changes in state to each other.

10

This capability is particularly important in our context for the workflow tool so that it can
communicate a business decision such as an approval to the content management and
delivery applications. All of the proposed products here utilise a communication style called
WebHooks. WebHooks provide a light-weight way for applications to communicate about
changes in the application by calling a described HTTP endpoint in response to an event. Our
solution proposes using application WebHooks in conjunction with a cloud platform
provided pub/sub provider such as Azure Event Grid.

Implementing a component-based architecture for
front-end development
Component-based architecture
A component-based front-end architecture in this context means that the user interface of
our digital products is built from composable, reusable units. This method of organising our
user interface elements brings the following benefits:

• Allows different parts of the UI to more easily, grow and change at different paces

• Makes it easier to ensure UX consistency across a portfolio of products

• Optimises the requirements and design process for new products by providing a
baseline to work from

One of the artefacts typically created as part of implementing a component based front-end
architecture is a UI/UX pattern library. This library presents the full suite of components
grouped together in a way that makes it easy for designers and developers to understand
how to build new products. By adding additional context to the UI pattern library such as
documentation detailing how to use the current components as well as how to create new
ones we begin to describe a broader organisational resource that is often referred to as a
design system.

Design Systems
A design system is a collection of reusable components, guided by clear standards, that can
be assembled together to build any number of applications. A design system will typically
consist of the following:

• Visual design language

• UI/UX pattern library

• Documentation detailing standards and the usage of components

In order to quickly iterate with confidence, design teams need access to a single source of
truth that allows for a scalable UI language and streamlined UX guidelines. With brand
touch-points reaching over multiple channels and platforms, consistent user experience can
be assisted by leveraging a central design language.

11

Providing a unified view of content and data through
the use of APIs
Introducing a centralised API management tier that provides a facade over the APIs
provided by your existing products allows you to do a number of things.

Firstly, it makes data available for delivery channels other than the Web - mobile is a good
example here

Secondly it makes data from your systems available so that they can be integrated together,
this provides opportunities for you to provide real value for your users

Thirdly by introducing a facade over existing APIs you provide a way to add and remove
services from your platform without affecting the platforms underlying capability

12

Current State
In materials supplied to us and further outlined and expanded on during meetings with
stakeholders, Shelter are constrained considerably by their current content management
system, Squiz Matrix. The asset-based nature of the CMS means that there is a reliance on
technical teams within Shelter to deliver content updates which causes considerable
inefficiencies. As a result of this, there is a lack of a clear and transparent workflow that
results in long lead times and an oblique understanding around the business of the state of
a change.

13

Future State
The following diagram provides an overview of the proposed Digital Engagement System. It
includes the following selected products:

• Jira - Jira provides Agile Project Management functionality including the ability to
design workflows and track work visually using Scrum and KanBan-like boards

• Contentful - Contentful is a headless Content Management System

• Gatsby - Gatsby is a static site building tool that takes templated components and a
datasource and returns static HTML pages

• Netlify - Netlify is a Content Delivery Network that hosts static HTML. In addition, it
provides DNS integration that makes the provision of multiple environments simple
and straightforward to implement

• BitBucket - BitBucket provides source code hosting and is required to manage the
versioning of the static HTML delivered by Netlify

• BitBucket Pipelines - BitBucket pipelines provides a managed continuous delivery
service that can be configured to trigger automated deployment and release
processes

Further narrative describing the product choices is available later in this document. The
following sections describe the functional role of each of the products within the solution
architecture.

Jira manages editorial workflow
Jira is used to visualise the editorial workflow and is integrated with Contentful to provide
an easy way for users to swap between the applications and to reflect changes that are
made a content items state from one application to the other. For example, a content
change could be approved by a user in Jira and that change would be reflected in
Contentful. These integrations are implemented using WebHooks.

Contentful provides content management
Contentful is used to provide core content management functionality. This is distinct to
Content Delivery in the sense that it doesn’t provide any direct capability to serve, for
example, web pages to users. Contentful provides the capability to model and manage
content directly.

In our solution we’ve described how we take the content stored in Contentful and mix it
together with templates stored in BitBucket to create static HTML. The application that
performs this static HTML build process is Gatsby.

14

Gatsby provides static site building
Gatsby is a static site generator that uses React Components in combination with GraphQL
data sources to produce static HTML pages. Gatsby is integrated with Contentful to provide
the source of content for the website and with Netlify so that once content is approved and
published through Jira/Contentful a static version of the site is created and pushed to
Netlify

Netlify provides CDN hosting
Netlify is a Content Delivery Network that at its core provides static hosting for HTML. We’re
most interested in the additional value that the platform provides which include the
following capabilities:

• Automated deployments - deployments to Netlify can be automated easily by linking
them to branches in source control

• Automated management of https

• Integrated end user authentication - Netlify provides the functionality to integrate
user management

BitBucket and Pipelines manage releases and
deployments
BitBucket is a version control system that provides versioned storage for both Netlify and
for engineers managing software development projects.

BitBucket Pipelines is an optional additional product, tightly integrated with BitBucket that
provides a managed continuous delivery service. In practice and in this context, it is used to
automate the deployment of applications and documentation supporting the main website.
Deployment for the main website is handled by Netlify.

Jira manages development workflow
We’ve also included in the overview diagram some reference to the engineers involved in
improving and shaping the platform. In this context Jira is used as the tool to manage
development workflow.

Azure Functions provides Serverless Compute
Azure Functions is one of the serverless products offered as part of Microsoft’s Azure Cloud
platform. In our context we are using it to deliver the integration points between the main
website and more dynamic functionality such as form capture endpoints.

15

16

Evaluation Methodology

Shelter provided a number of User Stories which clearly described organisational needs for
the chosen CMS approach. We used these User Stories as the basis of our assessment by
taking the following steps:

1. Analysing the set of Shelter user stories and validating any gaps with business teams
by running a series of stakeholder workshops

2. Clustering the User Stories into Epics

3. Mapping Users Stories/ Epics to the core capability areas within the assessment
framework

4. Reviewing, assessing and scoring CMS, content delivery and workflow applications

The 20 capability areas which form the framework for assessment are:

• Content delivery

• Preview

• Web Content Management

• Digital Assessment (DAM)/Enterprise Digital Assessment Management

• Social

• Personalisation

• Promotion Management

• Targeting

• Campaign Reporting

• Analytics (campaign)

• Workflow Engine

• Profile Management

• Ecommerce Services

• Multi Site Management

• Analytics

• Custom Business Analytics

• Directory Services

17

• Customer Data

• Web Services

• Content Management

Digital Engagement Capability and
Maturity Model
This model includes six overarching categories (numbered 1 to 6) of core capabilities that
are required for effective digital marketing solutions. It maps current capabilities, to define
future state needs, and identifies the gaps that require solutions. This model describes
foundational elements needed to support a comprehensive, extensible Digital Engagement
Platform.

Categories
Content
The content category describes the creation and maintenance of content for optimum re-
use across multiple channels.

Application
The application category describes services required for creating and presenting content to
consumers.

Data
The data category describes the data layer constituting data access methods and platform
repositories as well as corporate databases.

Integration
The integration category describes the integration layer responsible for interfacing with
legacy and current systems.

Monitoring
The monitoring category describes the collection, analysis, and reporting on platform and
site performance.

Governance and Operations
The governance and operations category describe governance and operational concerns.

18

Priority
The model serves as an aid by capturing the priority of each capability to help systematically
determine in what order capabilities should be built and launched. The model allows for
setting the priority for each capability within the platform using the following key.

Rating Description

3 Must have capability

2 Should have capability

1 Nice to have capability

0 Out of scope

Assessment
In order to frame the range of capabilities we require to deliver the described solution,
we’ve utilised a digital engagement capability model. It’s worth outlining how we’ve used
the model for the purposes of product selection and more specifically the parts of the
model that we haven’t used.

The capability model aims to provide a collection of foundational elements needed to
support a comprehensive, extensible digital marketing platform. In our scenario we’re using
it as a way of describing simply the capabilities that we are most interested in for the
purposes of selecting tools and products for the solution. Put simply we’ve used the tool as
a way of identifying specific capabilities that form part of a broader ecosystem of digital
engagement capabilities as way of providing greater context.

The model can also be used as a broader organisational tool to assess current levels of
capability and future aspiration. For our purposes here however, this use of the tool is out
of scope for the blueprinting project.

Product Selection - Web Content
Management System
Goal - to provide a framework for choosing a Web Content Management System that best
supports the needs of Shelter.

19

The content management system is the main system that administrative users use to create,
manage and publish content across a range of delivery channels. The CMS will typically
consist of two main components:

• A content management application (CMA) is the front-end user interface that allows
a user to add, modify, and remove content from a website without the intervention
of a developer.

• A content delivery application (CDA) the delivers the information to end users.
Content Delivery as a product is discussed separately in this document.

Overview and recommendations
Whilst we describe the needs of the organisation fairly granularly by mapping requirements
generated from user stories to capabilities described in the digital engagement capability
model, to focus exclusively at this level of detail risks ignoring at least one key principle used
to help us make both architectural and product decisions.

This principle is determined by identifying and selecting a future state operating model. Or
to put it another way, once we determine who should manage the platform and who should
be responsible for future development of the platform, we can use this decision to guide the
choice of products that best meet our use cases.

There are three main operating models to choose from. These options can be characterised
as:

1. Responsibility for ongoing development of the platform is managed by an internal
team at Shelter using the knowledge and experience of the current team

2. Responsibility for ongoing development of the platform is managed by an internal
team at Shelter created by recruiting people with the required specialist skills

3. Responsibility for ongoing development of the platform is managed by a
development partner who provides a team with the required specialist skills

All three of these options are valid models, however Shelter have said to us that you want
to ensure that you have an internal capability that can manage future development of the
digital publishing platform and that preference whilst only explicitly removing one option,
does impact the choice between options 1 and 2.

Our experience of working with organisations similar to Shelter has lead us to believe that
building a capable and stable internal team of engineers with specialist product knowledge
is becoming increasingly difficult to do successfully.

Competition for engineers with deep knowledge of platforms such as Drupal & BloomReach
continues to intensify and a significant proportion of Manifesto’s customers are
organisations who have devolved responsibility for their content management platforms to
an agency.

20

With this in mind our recommendation is for Shelter to invest in a platform that can be
enhanced and developed by an internal team using currently available skills. This is
described as option 1.

Selection recommendation - Contentful
In our opinion, Contentful provides the best fit for;

 the planned operating model at Shelter
 the new architecture that is being proposed (in the former sections of this

document)
 and functionality such as the lightweight dynamic image resizing and tools for

managing the import and export of content give Contentful the edge in comparison.

Of the five products we looked at as part of the detailed analysis and comparison, we felt
there were three in particular that stood out as potential candidates, two that are more
specifically API focussed content management systems that would fit in excellently, and a
more classic CMS that also has the capability to fit within the proposed architecture.

The ones that stand out are Contentful and Prismic as API first options, and WordPress as a
more ‘classic’ CMS option. The API first options provide the best fit in terms of restructuring
how content is produced and managed with regards to a decoupled content delivery tier,
allowing for a lot of efficient reuse of content across multiple channels. Whilst Prismic’s
concept of ‘Slices’ is an interesting approach to grouping and reusing common modules, its
lack of a formal write API potentially limits the future proof nature of the selection.

A full breakdown of scoring can be found in the document; shelter-cms-product-evaluation-
scoresheets-v1.0.xlsx

Comparison Highlights
Contentful
+ Excellent API features

+ Good support for content model migrations

+ Good open source tools for managing content import / export

+ Good lightweight dynamic image resizing / cropping functionality

- Lack of reporting functionality (would need to build)

Prismic
+ Slices functionality provides a good way of grouping together common module
infrastructure

+ Releases concept provides good control over point in time publishing for more dynamic
sites

21

- Lack of validation for content entry fields

- Undercooked import / export interface

- Would probably require additional DAM or software to manage renditions

- Lacks a formal write API which limits its use from other applications

WordPress
+ Easy to use, well understood editorial interface

+ Good content API

+ Provides broader options than simply API (can render and deliver full sites)

+ Easily extendable

- Relies heavily on plugins such as ACF to make it viable as a Content Management Platform

22

Methodology
• Determine a long list of options

• Determine a shortlist of five prospective products

• Identify based on user needs a range of grouped assessment criteria

• Apply a weighting to describe our priorities

• Score each product against the criteria described

Market research
In order to determine a list of prospective Content Management Systems to pick from, we
performed some initial market research.

Hosting, support and maintenance costs
Both Contentful and Prismic are SaaS platforms, so hosting is tied in alongside licence costs.
These products both offer various tiers of service, with options around size of instance,
numbers of users permitted and tiers of service and support.

All figures are based on available information from the platform providers, either via
publicly available figures or from direct conversations with the vendors and should be
treated as indicative pending further negotiations with the vendors directly

Contentful Platform Costs
Contentful separate costs for service and costs for the environments (referred to as Spaces
in Contentful parlance). The service tiers come with additional features (such as SSO,
dedicated infrastructure) as well as being bundled with service features such as response
SLA’s and access to account management and solution architects.

Tier Indicative Costs Notes

Enterprise Grade Space,
Silver tier platform features

£35,000 -
£45,000/ year*

Includes SLA’s, access to account
management and solution architects

Large Space, Basic tier
platform features

£8049/ year** • 4 roles

• 48 Content Types

• 50,000 records

• 10 free users

* Price converted from Euros

23

** Price converted from Dollar’s

** Note additional users are $15/ user/ month.

Contentful offer a pro-bono account for not for profit organisations, equivalent to a large
space if Shelter are prepared to participate in co-marketing.

Prismic Platform Costs
Prismic have a variety of options for tiers of service, with numbers of users, support
functionality and SLA responsibility.

Tier Indicative Costs Notes

Professional Tier, Platinum £4,500/ year* • 99.9% Uptime SLA

• Priority Support

• Unlimited users

Professional Tier, Unlimited £2,750/ year* • 99.9% Uptime SLA

• Basic Support

• Unlimited users

* Price converted from Dollar’s. Includes 20% annual payment discount

WordPress Platform Costs
WordPress is free to license as it is open source. There are numerous options for hosting a
WordPress site. For ongoing hosting, we recommend WP Engine who are a WordPress
specialist managed hosting provider. We've been working together for a number of years
and are one of their preferred partners, with a number of sites maintained with them
including the UNICEF UK multisite.

Tier Indicative Costs Notes

Managed Hosting on
WPEngine

~£500 - £1000/ month • Cost is
dependent on
support/ SLA
requirements

24

Longlist
The following list comes from this report - https://www.realstorygroup.com/Reports/CMS/

and details 34 separate Web CMS products and platforms.

• Acquia - Drupal

• Adobe - AEM Sites

• Atex - Polopoly

• BloomReach - Digital Experience Platform

• CCI Europe - Escenic

• Contentful - Contentful

• CoreMedia - Digital Experience Platform

• Crafter Software - Crafter CMS

• CrownPeak Technology - CrownPeak CMS

• DotNetNuke - DotNetNuke

• e-Spirit - FirstSpirit

• Episerver - Episerver

• eZ Systems - eZ Enterprise

• GX Software - XperienCentral

• IBM - Web Content Manager

• Ingeniux - Ingeniux Content Management System

• Joomla Project - Joomla!

• Kentico - Kentico CMS

• Magnolia - Magnolia CMS

• Microsoft - SharePoint 2016 WCM

• MODX - Revolution

• OmniUpdate - OU Campus

• OpenText - TeamSite

• OpenText - OpenText Web Experience Management

• Oracle - WebCenter Sites

https://www.realstorygroup.com/Reports/CMS/

25

• Perfect Sense Digital - Brightspot

• Plone - Plone CMS

• Progress Software - Sitefinity CMS

• SDL - SDL Web

• Sitecore - Experience Platform

• TERMINALFOUR - Site Manager

• TYPO3 - TYPO3

• Umbraco - Umbraco CMS

• WordPress - WordPress

In addition, we've added the following API first CMS solutions to the list

• Prismic

• IBM Watson Content Hub

• Netlify CMS

• Directus

• ContentStack

From this long list we filtered down to a list of five options based on the following criteria:

• Excluding legacy platforms

• Costs for implementation and licensing are within the range

• Excluding products that were a poor fit for our scenario, this included products that:

o Focused on specific use cases such as multilingual

o Provided too little pertinent functionality

• Prefer API first CMS solutions

Exclusions
Legacy

• IBM: Web Content Manager

• Microsoft: SharePoint Server 2016

• OpenText: TeamSite

• OpenText: Web Experience Management

26

• Oracle: WebCenter Sites

Poor fit
• Atex - Polopoly (caters primarily for media and newspaper market)

• CCI Europe - Escenic (caters primarily for large scale media organisations - more a
publishing tools than an engagement platform)

• CoreMedia - Digital Experience Platform (caters primarily for large scale
organisations with complex media focussed needs, pricing starts at $28,000 per core
with an additional per-user cost)

• Crafter Software - Crafter CMS (based on Alfresco would suit organisation with a
pre-existing commitment to that technology)

• CrownPeak Technology - CrownPeak CMS (fully hosted CMS platform, with licensing
costs starting at $72k per year. Hosted exclusively on AWS)

• DotNetNuke - DotNetNuke (Open source .NET product, poor content production
functionality including metadata support and internal search)

• e-Spirit - FirstSpirit (focussed on integration with enterprise portals such as SAP
Portal)

• eZ Systems - eZ Enterprise (PHP based, recently re-written, licensing costs range
from $36,500 - $66,000 per year with cloud costs additional)

• GX Software - XperienCentral (Java based platform with costs in the range of $60k -
$150k per year)

• Ingeniux - Ingeniux Content Management System (.net based)

• Joomla Project - Joomla! (Open source PHP product, lack of support for multisite
scenarios)

• Magnolia - Magnolia CMS (Focused on integrations)

• MODX - Revolution (Simpler open source PHP product, focusses on small webshops,
interactive agencies and nonprofits with internal dev resource.)

• OmniUpdate - OU Campus (caters primarily to higher education institutions)

• Perfect Sense Digital - Brightspot (caters to larger media organisations,
implementation costs ranging from $500K - $1.5M)

• Plone - Plone CMS (Python based open source platform, requires development to
deliver anything beyond simple informational sites)

• SDL - SDL Web (caters primarily for large multinational enterprise customers)

• TERMINALFOUR - Site Manager (focussed on higher education customers, licensing
model charges per content item.)

27

• TYPO3 - TYPO3 (PHP based platform focussed on providing support for community
features such as polls, forums and blogs. Complex user interface)

• Adobe - AEM Sites (provides an excellent digital marketing platform / ecosystem, is
expensive to purchase, implement and run, would require internal dev resource to
be cost effective to build on, external resource is expensive, implementations are
large scale development projects)

• Sitecore - Experience Platform (similar to AEM, is an excellent platform, but is
expensive to purchase and implement, because the development model doesn't
always follow microsoft standards, you would need sitecore expertise - typical deal
size is $350,000+)

• Progress Software - Sitefinity CMS (.NET standards based, widget-based page
building provides flexible editorial interface)

• Kentico - Kentico CMS (.NET standards based, provides a good range of functionality,
pricing is per domain / per server - $999 per month SAAS hosted)

• Episerver - Episerver (.NET standards based, provides good digital marketing tools,
cloud based hosting is costed by pages views)

• Umbraco - Umbraco CMS (doesn't provide a native, granular content modelling
paradigm)

Selections
Candidates
After excluding legacy and poor fit selections, we were left with the following candidates for
further evaluation:

• WPEngine – WordPress
• Acquia - Drupal
• BloomReach - Digital Experience Platform
• Contentful – Contentful
• Directus
• ContentStack
• IBM Watson Content Hub
• Prismic
• Netlify CMS

After additional consideration we further discounted the following:

• Acquia - Drupal

o Drupal is an excellent fit for community and digital marketing scenarios, with
a large community supporting the creation of connectors, plugins and
integrations with a variety of sources

28

o Whilst Drupal does have good API support, it does not fit the recommended
architectural approach – it is a complete CMS and content delivery product in
one, which whilst offering advantages in some aspects, such as potentially a
simpler user experience, it prevents as clear a vision of the future of the
platform and the ability to evolve and adapt over time.

o Drupal also requires specialist development knowledge of the CMS, which
doesn’t make it a good choice for the operating model recommendation as
described above.

o Implementation and hosting costs for a Drupal build are also higher than
some of the other items on the candidate list.

• BloomReach - Digital Experience Platform

o BloomReach is best suited to scenarios that require a fine-grained content
model and good integration capabilities. It is reasonably straightforward for
content editors, but its UI can be limited, so it would require more significant
customisation to support power users

o BloomReach is able to function as a headless CMS, which would fit the
architectural recommendation, however it’s approach is still to tie the CMS to
the delivery tier in a closer way, which would not suit every use case for
Shelter, particularly in regard to the digital roadmap.

o BloomReach also requires specialist development knowledge of the CMS,
which doesn’t make it a good choice for the operating model
recommendation as described above.

• Directus

o Directus is an open source Headless CMS with an excellent user interface and
top-quality documentation. However, it lacks exposing certain features
through the UI, which would require development intervention – the very
circumstance Shelter is looking to move away from which is why it was
ultimately discounted from consideration.

• ContentStack

o ContentStack is also a Headless CMS, offering the same benefits as outlined
above. It is easy to use and understand for content editors and offers a
variety of options for developers, although it can lack significant
customisation options out of the box.

o The price of a ContentStack hosting and license is higher than the others in
consideration

o Overall, the out of the box experience for ContentStack is quite limited to
some of the others in consideration, which is why it was discounted from the
shortlist.

29

Shortlist
We are then left with the following 5 items on the shortlist for detailed evaluation and
scoring.

• Contentful

• Prismic

• IBM Watson Content Hub

• WPEngine - WordPress

• Netlify CMS

30

Scoring
Scoring scale

The following describes the scale used to score the capabilities described for each product

Ratings Description

4 Available out of the box, but some configuration required.

3 Available out of the box, but extensive configuration required.

2 Minimal custom development required to support the capability.

1 Extensive custom development required to support the capability.

0 No capability - completely custom solution.

31

Web Content Management Selection Scores

Weighting Contentful Prismic IBM

Watson
Netlify
CMS

WordPress

Content Authoring 20% 2.46 2.46 2.31 2.23 2.54

Content Delivery 20% 2.80 2.80 2.60 2.40 2.20

Integration APIs
and Extension

20% 3.33 2.67 2.67 1.67 2.67

Digital Asset
Management

10% 3.00 2.00 2.00 1.50 2.50

Cost of Ownership 10% 2.20 2.40 2.00 2.80 3.20

Platform
Management
Complexity

5% 3.00 3.00 3.00 2.00 3.00

Security 15% 2.50 2.50 2.50 2.50 2.00

Totals

2.764 2.551 2.440 2.164 2.501

32

Recommendation - Content
Delivery Stack
Component Based Framework
Framework Evaluation
We evaluated three frameworks for the Front-End delivery - React.js, Vue.js and Angular.

Name Notes

React.js + Strong component-based framework

- State management is complex

Vue.js + Strong component-based framework

+ Use of HTML more formally as templating

- Community is smaller

Angular - Batteries included approach requires a full commitment to the framework

Recommendation - React.js
React and Vue are really quite similar from a functional perspective. Following
conversations with the development team at Shelter we recommend React given the
broader range of experience across the teams at Manifesto and Shelter.

Costs
As open source frameworks, there are no costs associated with these selections.

Content Delivery
Stacks Evaluated
Some parts of this product are typically supported by a content management system and a
content delivery application is referenced in the Content Management product above.
However in our context there are other technologies involved in the delivery of content to
end users including caching frameworks such as Content Delivery Networks (CDNs).

33

Name Notes

Netlify CDN • Static Site Generation using Gatsby.js, React and
Contentful -

https://www.gatsbyjs.org/blog/2017-12-06-gatsby-plus-
contentful-plus-netlify/

• Need to discuss Netlify functions (by default AWS)

• Provides a good branch-based preview model

Azure (CDN, Static Hosting,
WebApp Hosting)

• Good fit with Orgs strategic choice of Azure (more
building than just Netlify)

• Doesn't need to be just static site, could include
dynamic node / React / Vue

AWS (CDN, Static Hosting,
Web App Hosting)

• Less good fit with Org, better fit with Netlify

• Doesn't need to be just static site, could include
dynamic node / React / Vue

Recommendation - Netlify
Netlify is one of a series of modern, more managed CDNs in that as well as providing static
hosting it includes additional functionality to support use cases such as authentication and
integration with AWS functions as a service

Costs

Name Indicative
Costs

Notes

Netlify £330/
month*

Includes Professional Tier of

• Functions

https://www.gatsbyjs.org/blog/2017-12-06-gatsby-plus-contentful-plus-netlify/
https://www.gatsbyjs.org/blog/2017-12-06-gatsby-plus-contentful-plus-netlify/

34

• Identity

• Forms

• Teams

Azure ~£100/
month

Azure hosting is considerably more self service, consisting of a
range of components, and costs are based on usage/ number of
users. This indicative price would need further refinement if this
hosting option was selected.

AWS ~£100/
month

AWS hosting is considerably more self service, consisting of a range
of components, and costs are based on usage/ number of users.
This indicative price would need further refinement if this hosting
option was selected.

* Price converted from Dollar’s

Design System
Describing a framework for how your users interact with all of your services, not just the
pages that the content managed website provides a point of separation between the user
experience that you provide to your users across your digital engagement platform and it's
various implementations. In practice this means the creative design, user experience and
front end build (HTML, CSS and Javascript) takes place as a separated project or phase from
the main CMS build. By designing and building this part of the work separately we recognise
the ability to progress and change our user experience and front end build with impacting
the CMS implementation to the same extent. In summary a separate UX pattern library:

• Supports the ability to keep design and user experience consistent across multiple
products

• Provides a style guide to provide clear guidance to collaborators and delivers
practical example driven guidance for implementation

• Supports the ability to change and update the frontend user experience at a
difference pace to the backend CMS implementation

Recommendation - Atomic Design
Atomic design - http://bradfrost.com/blog/post/atomic-web-design/ is a methodology for
creating design systems. There are five distinct levels in atomic design:

• Atoms

• Molecules

http://bradfrost.com/blog/post/atomic-web-design/

35

• Organisms

• Templates

• Pages

Atoms
Atoms are the basic building blocks of matter. Applied to web interfaces, atoms are our
HTML tags, such as a form label, an input or a button.

Molecules
Molecules are groups of atoms bonded together and are the smallest fundamental units of
a compound. These molecules take on their own properties and serve as the backbone of
our design systems. An example of a molecule might be a site search control including a
label, input and search button.

Organisms
Molecules give us some building blocks to work with, and we can now combine them
together to form organisms. Organisms are groups of molecules joined together to form a
relatively complex, distinct section of an interface. An example of an organism might be the
Header bar of a website, including things such as site search molecule, a navigation bar and
a site logo.

Templates
At the template stage, we break our chemistry analogy to get into language that makes
more sense to our clients and our final output. Templates consist mostly of groups of
organisms stitched together to form a generalised view of a page type. An example here
might be a landing page template.

Pages
Pages are specific instances of templates. Here, placeholder content is replaced with real
representative content to give an accurate depiction of what a user will ultimately see.

Recommendation - Workflow and
Delivery
Products Reviewed

Product Notes

36

Jira + Good WebHook support

+ Visual workflow builder

- Standard UI is maybe complicated for casual users?

Trello + Good WebHook support

+ Extensible through the creation of PowerUps

- More limited functionality

LeanKit + Currently in use at Shelter

- No WebHooks - would need to understand better how to integrate with the
rest of the stack

Recommendation - Jira
Jira’s excellent WebHook support makes it the best fit for integrating the different products
that form the proposed architecture. Its visual representation of workflow also makes it an
excellent fit for use as the source of truth for content moderation. Jira is an incredibly
powerful and flexible tool - if not configured the options can be overwhelming for a casual
user - so it’s important that the interface is tuned, but its in depth permissions system mean
it is suitable for a variety of users.

Costs

Name Indicative
Costs

Notes

Jira £267/ month* • Assumes 50 users - $7/ user/ month (prices reduce at 101
users plus)

Trello £280/ month* • Assumes 50 users - $9.99/ user/ month (billed annually)

* Price converted from Dollar’s

37

Appendix A – Testing Approach

During the initial phase of the project, Manifesto will produce a Test Strategy document –
outlining any our approach to testing on the project, establishing boundaries for Manifesto
testing, and identifying any areas of high risk for consideration during testing. Attached
below is a sample of the table of contents for a document for a project of a similar size.

38

Appendix B - Capabilities to
Recommendations Index
Content Management
Capabilities

• 1.9.1 Intuitive content editing paradigm

• 1.9.2 WYSIWYG authoring

• 1.9.3 Modular authoring paradigm

• 1.9.5 Metadata management

• 1.9.11 Web forms authoring

• 1.9.13 Versioning

• 1.9.15 Publishing

• 1.9.20 Roles and permissions (author)

• 1.9.21 Visual/Creative design

• 1.9.24 Asset search and filter

• 1.9.25 Data entry validation

• 1.1.1 Scalability

• 1.1.2 Caching

• 1.1.6 Content syndication

• 1.1.8 Social media

• 1.1.12 Delivery failover

• 1.7.1 Content review / Live preview

• 1.10.1 Rich media asset management

• 1.10.8 Rendition creation and management

• 2.3.3 Multi-tenant architecture

• 3.1.1 Content import and export

• 4.3.2 Integration support

39

• 4.3.3 Content repository APIs

Workflow Engine

Capabilities

• 2.1.1 Publishing workflow

Component Based Framework

Capabilities

• 1.9.3 Modular authoring paradigm

Content Delivery

Capabilities

• 1.1.1 Scalability

• 1.1.2 Caching

• 1.1.12 Delivery failover

• 1.1.6 Content syndication

Integration

Capabilities

• 4.3.2 Integration support

Analytics

Capabilities

• 1.20.1 Campaign performance

• 1.20.2 3rd party referral tracking

• 2.6.1 Content analytics

• 2.6.2 Visitor analytics

• 2.6.3 Clickstream analysis

40

Ecommerce

Capabilities

• 2.13.1 Payment gateway

Email Distribution

Capabilities

• 1.1.9 Email distribution

Personalisation

Capabilities

• 1.16.1 Personalization

• 1.16.2 Personalised content

• 1.17.1 Segmentation

• 1.17.2 Campaign management

• 1.18.1 Multivariate testing

• 1.18.4 Content targeting

• 1.20.6 A/B and multivariate testing

	Introduction
	Purpose of this Document
	Document Scope
	Related Documents

	High-Level Solution Design
	Project background
	Goals
	Overview of Solution
	Summary of Recommendations
	Separating the concerns of content management, workflow and delivery
	Decoupled content management
	Utilising an automated, static publishing model
	Implementing a visual workflow tool to manage content publishing
	Facilitating integration using APIs and an event-based model

	Implementing a component-based architecture for front-end development
	Component-based architecture
	Design Systems

	Providing a unified view of content and data through the use of APIs

	Current State
	Future State
	Jira manages editorial workflow
	Contentful provides content management
	Gatsby provides static site building
	Netlify provides CDN hosting
	BitBucket and Pipelines manage releases and deployments
	Jira manages development workflow
	Azure Functions provides Serverless Compute

	Evaluation Methodology
	Digital Engagement Capability and Maturity Model
	Categories
	Content
	Application
	Data
	Integration
	Monitoring
	Governance and Operations

	Priority
	Assessment

	Product Selection - Web Content Management System
	Overview and recommendations
	Selection recommendation - Contentful

	Comparison Highlights
	Contentful
	Prismic
	WordPress
	Methodology
	Market research
	Hosting, support and maintenance costs
	Contentful Platform Costs
	Prismic Platform Costs
	WordPress Platform Costs

	Longlist
	Exclusions
	Legacy
	Poor fit

	Selections
	Candidates
	Shortlist
	Scoring
	Web Content Management Selection Scores

	Recommendation - Content Delivery Stack
	Component Based Framework
	Framework Evaluation
	Recommendation - React.js
	Costs

	Content Delivery
	Stacks Evaluated
	Recommendation - Netlify
	Costs

	Design System
	Recommendation - Atomic Design
	Atoms
	Molecules
	Organisms
	Templates
	Pages

	Recommendation - Workflow and Delivery
	Products Reviewed
	Recommendation - Jira
	Costs

	Appendix A – Testing Approach
	Appendix B - Capabilities to Recommendations Index
	Content Management

